A Pure Confinement Induced Trimer in quasi-1D Atomic Waveguides

molécule

atomes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ludovic Pricoupenko

Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université – Paris

IHP - 01 February 2018

Outline

• Context

- Atomic gases near s-wave magnetic Feshbach resonances
- Atomic gas in low dimensions

• 2- and 3-body problem in 1D atomic waveguides

- Two-channel model
- Confined induced dimers
- Some spectrum of trimers in the vicinity of a Feshbach resonance
- Existence of a pure Confined Induced Trimer in the 1D limit
- Summary & perspectives

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some key features of ultracold-atoms

- Tunable effective interactions Magnetic Feshbach resonance \implies 3D scattering length a(B)
- Tunable dimensionality 3D \leftrightarrow 2D, 3D \leftrightarrow 1D
- Dilute limit $nb^3 \ll 1$ & possible large correlations $na^3 \gtrsim 1$ (unitary limit)

2-channel model

STM equation

Conclusions

Atoms in a 1D waveguide

1D wave guide

2D isotropic harmonic trap \implies 1D atomic wave guide

1-particle energy : $E = \frac{\hbar^2 k^2}{2\mu} + \hbar \omega_{\perp} (2n + |m| + 1)$

- *m* \hbar : angular momentum
- *n* : radial quantum number
- k : 1D wavenumber

From the Efimov $-E_0 e^{-2n\pi/s_0}$... to the Mc Guire trimer $\frac{-4\hbar^2}{ma_{1D}^2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two-channel modeling of the Feshbach resonance

Atom :
$$a_{\mathbf{k}}^{\dagger}|0\rangle$$
 ; Molecule : $b_{\mathbf{k}}^{\dagger}|0\rangle$
 $H = \int \frac{d^{3}k}{(2\pi)^{3}} \left[E_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \left(\frac{E_{\mathbf{k}}}{2} + E_{\mathrm{mol}}\right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \right]$
(Kinetic term & $E_{\mathrm{mol}} = E_{\mathrm{mol}}^{0} + \delta\mathcal{MB}$)
 $+\Lambda \int \frac{d^{3}kd^{3}\mathcal{K}}{(2\pi)^{6}} \left[\langle k|\delta_{\epsilon}\rangle b_{\mathbf{K}}^{\dagger} a_{\underline{\kappa}} - \mathbf{k} a_{\underline{\kappa}} + \mathrm{h.c.} \right]$
(\mathbf{k})

 $+ \frac{g}{2} \int \frac{d^3k d^3 K d^3 k'}{(2\pi)^9} \langle k' | \delta_{\epsilon} \rangle \langle \delta_{\epsilon} | k \rangle a^{\dagger}_{\frac{\kappa}{2} - \mathbf{k}'} a^{\dagger}_{\frac{\kappa}{2} + \mathbf{k}'} a_{\frac{\kappa}{2} + \mathbf{k}} a_{\frac{\kappa}{2} - \mathbf{k}}.$ (atom-atom interaction)

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} \& \langle k | \delta_{\epsilon} \rangle = \exp\left(-\frac{k^2 \epsilon^2}{4}\right)$$
 cut-off function

Parameters obtained from the 2-body properties at low E

- background scattering length: $a_{\mathrm{bg}} \leftrightarrow g$
- scattering length: $a = a_{bg} \left(1 \frac{\Delta B}{B B_0} \right)$
- width parameter:

$$R^{\star} = rac{\hbar^2}{m a_{
m bg} \delta \mathcal{M} \Delta \mathcal{B}} \propto rac{1}{\Lambda^2}$$
 Petrov PRL (2004)

• short range parameter: $\epsilon \sim \left(\frac{mC_6}{\hbar^2}\right)^{1/4}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Confinement Induced Dimers in 1D waveguide

- Zero-range model Olshanii PRL (1998)
- Two-channel model study:

T. Kristensen, L. Pricoupenko PRA (2015) 🗈 🗸 로너 로너 오이어?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Study of trimers in the waveguide

•
$$E = E_{3body} - E_{Com} < 0$$

- s-wave sector
- Skorniakov Ter Martirosian equation for trimers in the 1D waveguide :

$$D(E^{\text{rel}})f(\underline{n},\underline{m}=0,k) = 2\sum_{\underline{n}'=0}^{\infty} \int \frac{dk'}{2\pi} \langle \underline{n}, k | \mathcal{K}(E) | \underline{n}', k' \rangle f(\underline{n}',\underline{m}'=0,k')$$

with $E^{\text{rel}} = E - (2\underline{n} + |\underline{m}| + 1)\hbar\omega - \frac{3\hbar^2k^2}{4m}$

- Explore the case $a_{\perp}/\epsilon = 20$ for several resonances
- n_{\max} from 100 to 400 $\Longrightarrow (2n_{\max} + 1)^3$ values of $d^j_{m,m'}(\theta)$. (typical matrix sizes $\sim 30\ 000$)

Example of a narrow resonance

 39 K at $B_0=752$ G ; $R^{\star}=36.4R_{
m vdw}$ $a_{\perp}=20\epsilon~(\omega=2\pi imes55.4$ kHz)

996

Broad Feshbach resonance near a shape resonance

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

STM equation for the purely 1D contact model

- 1D scattering length: $a_{1D} \xrightarrow{e^{ik_0 z}}_{particle 1} \xrightarrow{e^{-ik_0 z}}_{particle 2} \xrightarrow{e^{-ik_0 z}}_{particle 2} \xrightarrow{e^{-ik_0 z}}_{particle 2} \xrightarrow{e^{-ik_0 z}}_{particle 2} \xrightarrow{e^{-ik_0 z}}_{particle 1} \xrightarrow{e^{-ik_0 z}}_{f_{1D}} \xrightarrow{e^{-ik_0 z}}_{f_{1D}}$
- Lieb-Liniger interaction: $\frac{-2\hbar^2}{ma_{1D}}\delta(z)$
- Dimer wavenumber: $q_{\rm d} = 1/a_{
 m 1D}$ $a_{
 m 1D} > 0$
- 1 Trimer (Mc Guire): $q = 2q_d$; $f(k) = \frac{1}{k^2 + 4q_A^2}$

$$\left(\frac{1}{\sqrt{\frac{3k^2}{4}+q^2}}-\frac{1}{q_{\rm d}}\right)f(k)+4\int\frac{dk'}{2\pi}\frac{f(k')}{q^2+k^2+k'^2+kk'}=0$$

Quasi-1D limit for 3 atoms

- Binding wavenumber of the trimer q: $E = 2\hbar\omega \frac{\hbar^2}{m}q^2$
- Low energy limit $qa_{\perp} \ll 1$

Component of the wavefunction on n > 0 modes can be neglected

Projection of the STM equation in the mode n = 0

 \Rightarrow Quasi-1D STM equation

$$\left(\frac{1}{\sqrt{\frac{3k^2}{4}+q^2}}-\frac{1}{q_d}\right)f(0,0,k)+4\int\frac{dk'}{2\pi}\sum_{\substack{n=0\\a_{\perp}^2}}^{\infty}\frac{4^{-n}f(0,0,k')}{\frac{dk'}{2}+q^2+k^2+k'^2+kk'}=0$$

C. Mora, R. Egger, and A. O. Gogolin PR A 71, 052705 (2005)
$$\vdots$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Trimer solutions in the quasi-1D limit

• Ground state: deviation from the Mc Guire trimer

• 1 excited state : a Pure Confinement Induced Trimer

• Existence of the CIT in the 1D limit $a_{\perp}/a_{\rm 1D} \rightarrow 0^+$?

- Small parameters: $q^2 = q_d^2(1 + \chi)$; $\eta = (qa_\perp)^2$
- Transformations: $u = \frac{k}{q}$; $\langle u | \psi \rangle = f(0,0,k)$
- Quasi-1D STM equation for $\eta \ll 1$

$$\langle u|\mathcal{L}_{0}|\psi\rangle + \langle u|\delta\mathcal{L}|\psi\rangle = \sqrt{1+\chi}\langle u|\psi\rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

- $\langle u|\mathcal{L}_0|\psi\rangle = \frac{\langle u|\psi\rangle}{\sqrt{\frac{3}{4}u^2+1}} + 4\int \frac{du'}{2\pi} \frac{\langle u'|\psi\rangle}{1+u^2+u'^2+uu'}$
- $\langle u|\delta \mathcal{L}|\psi\rangle = 4\eta \ln\left(\frac{4}{3}\right)\int \frac{du'}{2\pi} \langle u'|\psi\rangle$

CIT wavefunction near the dimer threshold

• Exact Atom-dimer wave function of the Lieb-Liniger model

$$\langle u|\psi\rangle = (2\pi)\delta(u) - \frac{4}{u^2+1}$$

• Quasi-1D STM equation for small energies $\chi \rightarrow \mathbf{0}$

$$\Rightarrow \langle u | \psi \rangle \propto \frac{1}{\frac{3}{4}u^2 + \chi}$$
 for $u \to 0$

• CIT wavefunction: $\langle u|\psi_1\rangle = \langle u|\psi_1^{(0)}\rangle + \langle u|\delta\psi_1\rangle$

$$\langle u|\psi_1^{(0)}
angle = rac{\sqrt{3\chi}}{rac{3}{4}u^2 + \chi} - rac{4}{u^2 + 1}$$
 ; $rac{\langle u|\delta\psi_1
angle}{\langle u|\psi_1^{(0)}
angle} o 0$ for $\eta o 0$

• But . . . no quantification condition if one neglects $\langle u|\delta\psi_1
angle$

Spectrum of the Confinement Induced Trimer

- Equation verified by $\langle u | \delta \psi_1 \rangle$ at the first order in η

$$\langle u|\mathcal{L}_0 - 1|\delta\psi_1\rangle = \eta \ln\left(\frac{4}{3}\right) + \frac{4\sqrt{3\chi}}{3u^2} \left(1 - \frac{1}{(u^2+1)^2\sqrt{\frac{3}{4}u^2+1}}\right).$$

• Regular solution at u = 0:

$$\implies \sqrt{\chi} = \frac{2}{\sqrt{3}} \ln\left(\frac{4}{3}\right) \eta$$
$$\implies q^2 = q_{\rm d}^2 \left[1 + \frac{4(a_\perp q_{\rm d})^4}{3} \ln^2\left(\frac{4}{3}\right)\right]$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Spectrum of the Confinement Induced Trimer

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Summary & perspectives

• Model including the Feshbach coupling in atomic waveguides Full crossover between Efimov and Quasi-1D trimer spectrum

Summary & perspectives

- Model including the Feshbach coupling in atomic waveguides Full crossover between Efimov and Quasi-1D trimer spectrum
- Regime where $a_{1D} \rightarrow \infty$ & broad resonances:
 - 2 quasi-1D trimers: Mc Guire & 1 Pure CIT
 - continuously connected with the lowest Efimov states

Summary & perspectives

- Model including the Feshbach coupling in atomic waveguides Full crossover between Efimov and Quasi-1D trimer spectrum
- Regime where $a_{1D} \rightarrow \infty$ & broad resonances:
 - 2 quasi-1D trimers: Mc Guire & 1 Pure CIT
 - continuously connected with the lowest Efimov states
- Rare situation where $quasi-1D \neq 1D$ in the limit of zero energy

Summary & perspectives

- Model including the Feshbach coupling in atomic waveguides Full crossover between Efimov and Quasi-1D trimer spectrum
- Regime where $a_{1D} \rightarrow \infty$ & broad resonances:
 - 2 quasi-1D trimers: Mc Guire & 1 Pure CIT
 - continuously connected with the lowest Efimov states
- Rare situation where $quasi-1D \neq 1D$ in the limit of zero energy
- To be done: Pure Confinement Induced 4-body, 5-body ... at the dimer threshold ?